
cif applications

J. Appl. Cryst. (2011). 44 doi:10.1107/S0021889811041161 1 of 4

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 24 June 2011

Accepted 6 October 2011

2011 International Union of Crystallography

Printed in Singapore – all rights reserved

iotbx.cif: a comprehensive CIF toolbox

Richard J. Gildea,a,b* Luc J. Bourhis,a Oleg V. Dolomanov,a Ralf W. Grosse-

Kunstleve,b Horst Puschmann,a Paul D. Adamsb and Judith A. K. Howarda

aDurham University, Department of Chemistry, Durham DH1 3LE, UK, and bLawrence Berkeley National

Laboratory, Physical Biosciences Division, MS 64R0121, CA 94720, USA. Correspondence e-mail:

rjgildea@lbl.gov

iotbx.cif is a new software module for the development of applications that make

use of the CIF format. Comprehensive tools are provided for input, output and

validation of CIFs, as well as for interconversion with high-level cctbx [Grosse-

Kunstleve, Sauter, Moriarty & Adams (2002). J. Appl. Cryst. 35, 126–136]

crystallographic objects. The interface to the library is written in Python, whilst

parsing is carried out using a compiled parser, combining the performance of a

compiled language (C++) with the benefits of using an interpreted language.

1. Introduction
The CIF (Crystallographic Information File) syntax (Hall et al., 1991)

has become firmly established (Brown & McMahon, 2002; Spek,

2009) as the file format for deposition and archiving of small-mol-

ecule crystal structures and increasingly their structure factors. Whilst

the Protein Data Bank (PDB) format (http://www.wwpdb.org) is still

the prevailing file format for deposition of macromolecular crystal

structures, the CIF format is nonetheless important to macro-

molecular software through their extensive use of the PDB chemical

components (http://www.wwpdb.org/ccd.html) and CCP4 monomer

libraries (Vagin et al., 2004).

In addition to the core CIF dictionary (Hall, Allen & Brown, 2005),

the International Union of Crystallography (IUCr) maintains CIF

dictionaries for describing the results of macromolecular (Fitzgerald

et al., 2005), powder diffraction (Toby, 2005) and electron density

studies (Mallinson & Brown, 2005), and for describing incommen-

surately modulated crystal structures (Madariaga, 2005). The Crys-

tallography Binary Format (CBF) and image-supporting Crystallo-

graphic Information File (imgCIF) (Bernstein & Hammersley, 2005)

are extensions to the CIF format to support inclusion of binary data

in the CIF, in particular raw experimental data from area detectors.

Furthermore, CIF is probably one of the most well known file formats

within the field of chemistry, since it is predominantly the form in

which chemists receive the results of a crystal structure analysis

carried out on their behalf.

The CIF format is intrinsically involved in a wide variety of crys-

tallographic applications from data collection to publication and

archiving of the outcomes of crystallographic studies. In addition

there is a wealth of crystal structure coordinates and reflection data

freely available in CIF format through the Crystallographic Open

Database (COD; Gražulis et al., 2009) and the large quantity of data

available as supplementary material for papers published in IUCr

journals, for which many possible uses can be imagined. As such it is

vital for a crystallographic library such as the cctbx (Grosse-Kuns-

tleve et al., 2002) to provide high-quality tools for reading, creation

and manipulation of CIFs, and extraction of crystallographic infor-

mation from them.

Several CIF programming libraries have been developed for

various languages and environments, including Fortran (Hall &

Bernstein, 1996; Rodriguez-Carvajal & González-Platas, 2003), C

(Ellis & Bernstein, 2001; Westbrook et al., 1997), Objective C (Chang

& Bourne, 1998), .NET (Lin, 2010), Java (Day et al., 2011), Perl

(Bluhm, 2000) and Python (Hester, 2006). Whilst there existed

several partial CIF parsers within the cctbx, each hand-crafted to suit

a specific task [separate tools for reading the PDB chemical

components and CCP4 monomer libraries (Painter & Merritt, 2004);

as part of the phenix.cif_as_mtz tool; for reading fcf reflection files as

output by SHELXL (Sheldrick, 2008)], a comprehensive CIF parser

that was tightly integrated with the rest of the library was conspicu-

ously absent.

During the development of the smtbx (small-molecule toolbox)

and OLEX2 (Dolomanov et al., 2009), it became apparent that the

CIF format would play a central part in presenting the results of the

procedures developed. In addition, there was a need to provide an

interface for managing the contents of the CIF within OLEX2.

Therefore it was decided to implement a new CIF framework within

the iotbx (input/output toolbox) module of the cctbx.

Given the availability of a clearly defined formal grammar for the

CIF syntax (Hall, Spadaccini et al., 2005), it was decided to use the

ANTLR parser generator (Parr, 2007) for the automatic generation

of a lexer and parser. ANTLR was chosen because of its support for

multiple programming languages, in particular its support for Python

and C/C++. In addition, the associated ANTLRWorks (http://

www.antlr.org/works/index.html) GUI development environment

features a number of tools that aid the development of grammars,

including visualization of syntax diagrams and rule dependency

graphs. This enabled the majority of the development to be focused

on the design of the internal representation of the CIF model, whilst

ensuring that the resulting parser closely follows the formal CIF

grammar. The code is structured in such a way that the parser is quite

distinct from the model, meaning that an alternative representation

of the model could be used with the same parser, and conversely a

different parser could be used to populate the existing iotbx.cif model.

As is standard practice in the cctbx, all aspects of the code are

rigorously tested by unit tests, guarding against future regression of

the code base. In addition the unit tests provide usage examples for

the programmer interface.

2. Validation of CIFs against data dictionaries

Successful parsing without errors of a given CIF indicates only that it

is syntactically correct. CIF dictionaries allow for a machine-readable

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB36

formal description of allowed data items and for possible restrictions

on the attributes of their associated values. A collection of applica-

tion-specific dictionaries are maintained by the Committee for the

Maintenance of the CIF Standard (COMCIFS), and can be used to

validate the contents of a given CIF. The CIF data dictionaries abide

by the CIF syntax, with two distinct dictionary definition languages

[DDL1 (Hall & Cook, 2005) and DDL2 (Westbrook et al., 2005)]

currently in use.

In the context of iotbx.cif, a CIF can be validated as follows:

The smart_load_dictionary function allows for a dictionary to

be loaded from a variety of sources, including from a locally stored

version, by downloading from an arbitrary URL or via lookup in a

CIF dictionary register (e.g. ftp://ftp.iucr.org/pub/cifdics/cifdic.

register), allowing use of the most up-to-date version of the

dictionary. A list of potential errors and warnings found during the

validation is output by the procedure. The error handling is designed

such that it is possible for an application making use of iotbx.cif to

override the default error handler with one specific to the needs of

the application.

3. Common CIF syntax errors and error recovery

As a result of comprehensive testing of the iotbx.cif parser a number

of commonly encountered syntax errors were identified. Among the

sources of CIFs used are the COD, a selection of CIFs obtained from

the IUCr journals web site, the PDB chemical components library, the

CCP4 monomer library and the Durham in-house database of crystal

structures. Among the commonly found errors are the following:

(1) Missing starting and closing quotes.

(2) Missing starting and closing quotes for a string containing

whitespace.

(3) Some text prepended to the CIF but not using CIF comment

format.

(4) Mismatching semicolon delimiters for a multi-line text field.

(5) More than one data value per tag.

(6) Missing data value for a tag.

(7) Incomplete CIF – e.g. missing data block heading.

(8) Intended data block heading containing whitespace or illegal

character(s). This can happen if a program uses the file name as the

data block heading when creating a CIF but does not remove/replace

whitespace or illegal characters.

(9) Non-ASCII characters – data values have been copied from

other sources; for example, this could be an author’s name or a place

name.

(10) Unquoted string with ‘[’ as the first character.

(11) Wrong number of values for a loop.

(12) Inclusion of an unnamed global_ block.

Item (10) was the syntax error most commonly observed in the

publicly available databases (i.e. excluding the Durham in-house

database), possibly because common syntax checking routines do not

currently flag this as an error. The CIF grammar explicitly forbids the

characters ‘[’ and ‘]’ from being the first character of an unquoted

string (Hall, Spadaccini et al., 2005).

The inclusion of unnamed global_ data blocks, whilst allowed by

the STAR grammar (Hall & Spadaccini, 1994), is expressly forbidden

by the current version of the CIF grammar, with the case-insensitive

word global listed as a reserved word that may not appear as an

unquoted data value in a CIF. However, in order to support parsing of

the CCP4 monomer library with iotbx.cif, a non-strict parsing mode

was added which permits the presence of global_ data blocks.

The most commonly encountered syntax error for CIF format

reflection files is item (11), although this error can affect any CIF

containing looped data items. The number of values in a loop must be

an exact multiple of the number of tags in the loop header and it is an

error if this is not the case. This is probably the hardest error to

diagnose since it is not associated with a specific line number, only the

particular loop, which may be many thousands of lines long in the

case of reflection data, and hence the entire loop is rendered invalid.

Frequently this error can be attributed to manual editing of the file

resulting in one or more values being accidentally deleted or inserted.

More worryingly, it is occasionally the result of a program outputting

the data in fixed-field format when one of the values takes up the full

width of its fixed field, losing a whitespace separator in the process.

Some of the syntax errors outlined above are, to varying degrees,

recoverable parsing or lexing errors. Missing quotes potentially can

be detected and missing tokens inserted when an end-of-line (EOL)

character is encountered, since a quoted string cannot extend past an

EOL character. For errors such as multiple values for a tag that is not

part of a loop, or a tag with no value given, the parser may recom-

mence parsing at the next valid token it finds, discarding those invalid

tokens. For invalid characters [items (9) and (10)], either the invalid

characters can be accepted or the offending tag–value pair can be

discarded (the current implementation does the latter). The most

problematic error is that of a missing closing semicolon for a semi-

colon text field, since the rest of the file up to the end-of-file (EOF)

character is consumed as part of the semicolon text field. Upon

reaching the EOF character an error is emitted by the lexer, but

automatic recovery from this error is not possible.

On the one hand, it may be desirable for a program to be as

accommodating of errors as possible on input whilst ensuring that the

output is as correct as possible. On the other hand, there are clear

advantages in having software that raises informative errors when

syntax errors are encountered, as this would discourage the prolif-

eration of incorrectly formed CIFs.

iotbx.cif provides two modes for error handling: in the strict mode

an exception is raised if any errors are encountered during parsing; in

the non-strict mode parsing continues after recovery from any errors,

providing a list of all errors encountered for examination.

4. Using iotbx.cif

Developers familiar with the built-in dictionary type of the Python

programming language (Python Software Foundation, 2011) will be

immediately at home with the syntax of the iotbx.cif representation of

the CIF model.

The top-level object is iotbx.cif.model.cif, which is the type

equivalent to a full CIF file. This contains zero or more data blocks,

which are accessed by data block name using the standard Python

dictionary square brackets notation for accessing a dictionary by key.

Using a valid data block name, this returns a CIF data block of the

type iotbx.cif.model.block. A CIF data block consists of a

sequence of data items and associated values. A data item can be

associated with either one value or a list of values (as part of a CIF

loop), and a given data item can only be found once per data block.

cif applications

2 of 4 Richard J. Gildea et al. � iotbx.cif J. Appl. Cryst. (2011). 44

These values can in turn be accessed using the square bracket

notation to retrieve the value(s) associated with a specified data item

(tag):

then

Looped items are stored by column, and the full list for a given

looped item can be accessed by the data name as shown below:

The full loop object can be extracted via the name of the loop. The

name of the loop is taken to be the longest common substring starting

with an underscore character, and followed by (but not including) an

underscore (in the case of DDL1-compliant CIFs) or point (in the

case of DDL2-compliant CIFs) character separator. This follows the

IUCr guidelines for reserved prefixes for local dictionary extensions

(http://www.iucr.org/resources/cif/spec/ancillary/reserved-prefixes).

Once a loop has been extracted, this can then be used to iterate

through by row, or to add further rows or columns to the loop. The

following example demonstrates the creation of a CIF loop

containing the symmetry operations of a given space group:

CIF objects (model.cif, model.block, model.loop) can be

exported in CIF format in several ways. The simplest way is using the

Python print statement as follows:

or alternatively

The show() method of the CIF object allows more fine tuning of

the output, including the amount of indentation used for looped data

and the width of the data name field. For more advanced formatting,

a Python formatting string can be provided to control the output of

individual loops (in contrast to the default behaviour where items are

single space separated).

Further documentation and example code can be found at http://

cctbx.sourceforge.net/iotbx_cif/.

4.1. Interconversion with cctbx crystallographic objects

An essential part of any crystallographic library or software is a

means to easily export/extract crystallographic information to/from

common crystallographic file formats. As such, two central crystal-

lographic objects in the cctbx, namely xray.structure and miller.

array, have methods enabling easy interconversion of either object

with a CIF. The xray.structure class comprises the objects needed

for calculation of structure factors – scatterers, site symmetry, crystal

symmetry – and provides many methods for manipulating the

structure. Similarly, the miller.array class brings together a set of

miller indices and associated data – such as intensities or amplitudes,

complex structure factors or Rfree flags – along with relevant methods

for acting on that data.

All crystal structures and miller arrays can be extracted from a

given CIF as follows:

Tools have been developed in order to support output of the

requisite structural information for publication of a structure deter-

mination. This includes the export of an xray.structure to CIF

format, and also the inclusion of geometrical features such as bonds

and angles. Optionally the covariance matrices for the refined para-

meters and the unit-cell parameters can be provided to enable the

calculation of standard uncertainties for both refined and derived

parameters.

iotbx.cif also includes support for the recently introduced restraints

CIF dictionary (ftp://ftp.iucr.org/pub/cif_core_restraints.dic), which is

intended to allow for the description in CIF format of the restraints

and constraints used in a least-squares refinement.

5. Performance

Whilst for many applications the processing of input files is not

usually a time-critical part of the program, it is important that the

overhead of file processing is minimal when using batch processing of

large numbers of files, in particular during the development and

testing of new algorithms or curation of ever-expanding CIF data-

bases. Since the program uses a compiled (C++) parser, it is expected

that parsing would be of sufficient speed to make handling even of

large CIF files interactive, including processing of files containing

structure factors. To test the performance of the parser and the

procedures for extracting crystallographic information, a short script

was run over all the CIF files in the COD, using an Apple MacBook

Pro with Quad-core Intel Core i7 (2.2 GHz).

A total of 145 559 CIFs were parsed at an average of 13 ms per file,

with only one file found to contain syntax errors; the remainder all

parsed successfully. The procedure was repeated in order to construct

instances of xray.structure; a total of 143 882 instances were

successfully constructed at an average of 23 ms per file. When the

procedure was run over 14 420 CIF-format reflection files found in

the COD, the average parsing time for a reflection file was 83 ms,

increasing to 115 ms when construction of a miller.array was

attempted after parsing. Table 1 gives the performance of iotbx.cif

tools on typical small-molecule and protein data files and two

selected dictionary files.1

cif applications

J. Appl. Cryst. (2011). 44 Richard J. Gildea et al. � iotbx.cif 3 of 4

1 4HHB.cif (Fermi et al., 1984) was downloaded from the PDB web site;
fg3210sup1.cif and fg3210CPsup2.hkl (Yufit & Howard, 2011) were
obtained from the IUCr web site.

The results show good performance for both the parser and the

procedures for extracting crystallographic information from the CIF

model. With the increasing availability of multi-core processors, it is

clear that, in conjunction with the large number of tools provided by

the cctbx, iotbx.cif is suitable for performing large-scale analyses of

crystal structures, since the overhead of reading structures from CIFs

is minimal.

The performance of CIF output for files containing loops with a

large number of values can be improved significantly by using the

advanced loop formatting option described in x4, since each value will

no longer be checked individually to determine if quoting of the value

is necessary.

As a by-product of the comprehensive testing of iotbx.cif on the

COD, numerous syntactic and semantic errors were identified and

communicated to the curators of the database. Using current hard-

ware with 48 processor cores, it is possible to run iotbx.cif over the

entirety of the COD (>160 000 files at the time of writing) in little

over two minutes, demonstrating the potential use of iotbx.cif to aid

the curation of CIF databases.

6. Conclusion

The iotbx.cif module is now used heavily by the OLEX2 (Dolomanov

et al., 2009) and PHENIX (Adams et al., 2010) software packages.

Additionally, the tools provided by the iotbx.cif module are currently

being used extensively, in conjunction with the COD as a source of

structural models and associated reflection data, in the evaluation of

different approaches to minimization (Grosse-Kunstleve, 2011).

With the addition of the iotbx.cif module, the cctbx now compre-

hensively supports most major small-molecule and macromolecular

crystallographic file formats [SHELX ins/res and hkl, CIF, PDB,

CCP4 maps (http://www.ccp4.ac.uk/html/maplib.html), X-PLOR hkl

and map (Brünger, 1993), and MTZ format (http://www.ccp4.ac.uk/

html/mtzformat.html) among others].

We believe that one of the strengths of iotbx.cif, and one that

distinguishes it from similar software libraries, is its tight integration

with the cctbx and higher-level crystallographic objects, providing

immediate access to a wealth of crystallographic tools. iotbx.cif is

equally suitable for integration into large-scale applications, stand-

alone scripts or batch processing of large numbers of CIFs.

7. Availability

iotbx.cif is available as part of the cctbx, which is released under a

nonrestrictive open-source licence. Source code and links to

precompiled binaries for a large number of Windows, Macintosh and

Linux systems can be found at http://cctbx.sourceforge.net/.

The authors wish to thank Saulius Gražulis for his efforts in

maintaining the Crystallography Open Database, which was an

invaluable resource during the development of iotbx.cif. We are

grateful for financial support from the EPSRC (EP/C 536274/1), the

NIH (grant No. GM063210) and the US Department of Energy under

contract No. DE-AC02-05CH11231.

References

Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221.
Bernstein, H. J. & Hammersley, A. P. (2005). International Tables for

Crystallography, Vol. G, Definition and Exchange of Crystallographic Data,
edited by S. R. Hall & B. McMahon, pp. 37–43. Heidelberg: Springer.

Bluhm, W. (2000). Star (CIF) Parser, http://pdb.sdsc.edu/STAR/index.html.
Brown, I. D. & McMahon, B. (2002). Acta Cryst. B58, 317–324.
Brünger, A. T. (1993). XPLOR Manual Version 3.1. New Haven: Yale

University Press.
Chang, W. & Bourne, P. E. (1998). J. Appl. Cryst. 31, 505–509.
Day, N. E., Murray-Rust, P. & Tyrrell, S. M. (2011). J. Appl. Cryst. 44, 628–634.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann,

H. (2009). J. Appl. Cryst. 42, 339–341.
Ellis, P. & Bernstein, H. (2001). CBFlib, http://www.bernstein-plus-sons.com/

software/CBF/.
Fermi, G., Perutz, M. F., Shaanan, B. & Fourme, R. (1984). J. Mol. Biol. 175,

159–174.
Fitzgerald, P. M. D., Westbrook, J. D., Bourne, P. E., McMahon, B.,

Watenpaugh, K. D. & Berman, H. M. (2005). International Tables for
Crystallography, Vol. G, Definition and Exchange of Crystallographic Data,
edited by S. R. Hall & B. McMahon, pp. 144–198. Heidelberg: Springer.

Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M.,
Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J.
Appl. Cryst. 42, 726–729.

Grosse-Kunstleve, R. W., Bourhis, L. & Adams, P. D. (2011). Acta Cryst. A67,
C597.

Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams, P. D. (2002).
J. Appl. Cryst. 35, 126–136.

Hall, S. R., Allen, F. H. & Brown, I. D. (1991). Acta Cryst. A47, 655–685.
Hall, S. R., Allen, F. H. & Brown, I. D. (2005). International Tables for

Crystallography, Vol. G, Definition and Exchange of Crystallographic Data,
edited by S. R. Hall & B. McMahon, pp. 210–257. Heidelberg: Springer.

Hall, S. R. & Bernstein, H. J. (1996). J. Appl. Cryst. 29, 598–603.
Hall, S. R. & Cook, A. P. F. (2005). International Tables for Crystallography,

Vol. G, Definition and Exchange of Crystallographic Data, edited by S. R.
Hall & B. McMahon, pp. 53–60. Heidelberg: Springer.

Hall, S. & Spadaccini, N. (1994). J. Chem. Inf. Comput. Sci. 34, 505–508.
Hall, S. R., Spadaccini, N., Brown, I. D., Bernstein, H. J., Westbrook, J. D. &

McMahon, B. (2005). International Tables for Crystallography, Vol. G,
Definition and Exchange of Crystallographic Data, edited by S. R. Hall & B.
McMahon, pp. 25–36. Heidelberg: Springer.

Hester, J. R. (2006). J. Appl. Cryst. 39, 621–625.
Lin, Y. (2010). J. Appl. Cryst. 43, 916–919.
Madariaga, G. (2005). International Tables for Crystallography, Vol. G,

Definition and Exchange of Crystallographic Data, edited by S. R. Hall & B.
McMahon, pp. 131–140. Heidelberg: Springer.

Mallinson, P. R. & Brown, I. D. (2005). International Tables for Crystal-
lography, Vol. G, Definition and Exchange of Crystallographic Data, edited
by S. R. Hall & B. McMahon, pp. 141–143. Heidelberg: Springer.

Painter, J. & Merritt, E. A. (2004). J. Appl. Cryst. 37, 174–178.
Parr, T. (2007). The Definitive ANTLR Reference: Building Domain-Specific

Languages, 1st ed. Rayleigh: Pragmatic Bookshelf.
Python Software Foundation (2011). Python Programming Language –

Official Website, http://www.python.org/.
Rodriguez-Carvajal, J. & González-Platas, J. (2003). IUCr Commission on

Crystallographic Computing Newsletter, No. 1, pp. 50–58.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.
Toby, B. H. (2005). International Tables for Crystallography, Vol. G, Definition

and Exchange of Crystallographic Data, edited by S. R. Hall & B. McMahon,
pp. 117–130. Heidelberg: Springer.

Vagin, A. A., Steiner, R. A., Lebedev, A. A., Potterton, L., McNicholas, S.,
Long, F. & Murshudov, G. N. (2004). Acta Cryst. D60, 2184–2195.

Westbrook, J. D., Berman, H. M. & Hall, S. R. (2005). International Tables for
Crystallography, Vol. G, Definition and Exchange of Crystallographic Data,
edited by S. R. Hall & B. McMahon, pp. 61–70. Heidelberg: Springer.

Westbrook, J. D., Hsieh, S.-H. & Fitzgerald, P. M. D. (1997). J. Appl. Cryst. 30,
79–83.

Yufit, D. S. & Howard, J. A. K. (2011). Acta Cryst. C67, o104–o106.

cif applications

4 of 4 Richard J. Gildea et al. � iotbx.cif J. Appl. Cryst. (2011). 44

Table 1
Execution times on (a) an Intel Xeon Processor E5520 (2.27 GHz) running
Microsoft Windows 7 Ultimate and (b) an Apple MacBook Pro with Quad-core
Intel Core i7 (2.2 GHz).

Read time
(ms)

Write time
(ms)

Validation time
(ms)

File name File size (kB) (a) (b) (a) (b) (a) (b)

fg3210sup1.cif 25 25 21 20 18 39 28
fg3210cpsup2.hkl 84 42 32 131 106 42 34
4hhb.cif 705 727 604 2061 1622 2658 1312
cif_core_2.4.2.dic 476 142 116 84 69 236 192
mmcif_std_2.0.09.dic 1716 788 677 368 298 1596 1313

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB14
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB15
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB16
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB17
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB18
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB19
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB20
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB21
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB22
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB23
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB24
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB25
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB27
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB28
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB29
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB30
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB31
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB32
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB33
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB34
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB35
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=hx5135&bbid=BB36

